Constructions of the reduced product type

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Uniqueness of a Certain Type of Subdirect Product

We introduce the "$type{lffs}$ subdirect product" and show that every ring is uniquely a $type{lffs}$ subdirect product of a family of $simple{basicls}$ rings. Also we show some applications.

متن کامل

Constructions for Modeling Product Structure

This paper identifies constructions needed for modeling product structure, shows which ones can be represented in OWL2 and suggests extensions for those that do not have OWL2 representations. A simplified mobile robot specification is formalized as a Knowledge Base (KB) in an extended logic. A KB is constructed from a signature of types (classes), typed properties, and typed variables and opera...

متن کامل

Forbidden Configurations and Product Constructions

A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix F , we define that a (0,1)-matrix A has F as a configuration if there is a submatrix of A which is a row and column permutation of F (trace is the set system version of a configuration). Let |A| denote the number of columns of A. We define forb(m,F ) = max{|A| : A is m-rowed simple matrix and has no configuration F}....

متن کامل

the verbal constructions in azari (harzani dialect)

most of the verbal constructions of harzani dialect have got inflectional affixes. the majority of the constructions are made up vy adding a specific verbal affix to the verbal stem (infinitive without infinitive marker). only a few number of them is formed by adding a verbal affix to the past participle of the verb. there are specific rules for the formation of different verbal types. there is...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1963

ISSN: 0040-9383

DOI: 10.1016/0040-9383(63)90005-3